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ABSTRACT

. The singularly constrained generalized network problem represents
a large class of capacitated linear programming (1.)°) problems. This
class includes any LLP problem whose coefficient matrix, ignoring single
upper bound constraints, contains m + 1 rows which may be ordered such
that each column has at most two non-zero entries in the first m rows.

The paper describes efficient procedures for solving such problems and
' presents computational results which indicate that procedures are at least

five times faster than the state of the art LLP systems MPS-360 and APEX-III.

/‘/
Jaeression w
! (3T | Wi Seglioy
8 Wil st O
SNARKDU o
O TN U—
| 1) e e B.,
DISTRIGUTION /2Y/ 4 Rali TV COD
WL ko deier SPERIRL
‘ |
{
oo




e S

1.0 INTRODUCTION

The singularly constrained generalized network problem represents

a large class of capacitated linear programming ([.P) problems. This class

includes any L.P problem whose coefficient matrix, ignoring simple upper
bound constraints, contains m *+ 1 rows which may be ordered such that
each column has at most two non-zero entries in the first m rows. There

are numerous real world applications of problems containing this structure.

For example, a major automobile manufacturer has devised a singularly
constrained generalized network model in which the extra constraint is due
to tariff regulations that dollar flows across the U.S. -Canadian border be
equal. Another example is a cash flow model [4] used by the U.S. Treasury

Department to analyze the effect of tax regulations on multinational firms

in which the extra constraint is used to balance direct loans.

, A large portion of the literature on LP problems has been devoted
to special cases of the singularly constrained generalized network problem.
In particular, if the m + 1st row of the coefficient matrix is a zero vector,
then depending on the structure of the first m rows, the problem is either
a shortest path, assignment, transportation, transshipment, generalized
transportation, or generalized transshipment problem. The most efficient
procedures for solving these specializations are based on viewing the
problems in a graphical context. In particular, the simplex algorithm has
been adapted [1, 2, 7, 10, 14, 15, 18, 20, 21, 22, 25] to solve problems
in which the coefficient matrix and the hasis matrix are stored as graphs

using computer list structures.
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The use of such structures reduces both the amount of work needcd
to perform the basic simplex steps and the amount of computer memory
required to store essential data. The matrix operations of finding the
representation of an entering vector and determining updated pseudo dual
variable values are performed by tracing paths within the basis graph.

Since the graphs contain only the non-zero entries in the problem (basis),

the list procedures [15, 23, 24] eliminate checking or performing unnecessary
arithmetic operations on zero elements. In addition, by exploiting the
triangular or near-triangular properties of such problems, these procedures
allow the basis matrix inverse to be stored implicitly as a basis graph.

This graph is updated during basis exchange steps by simply changing a

few pointers in the list structures. This entirely eliminates the arithmetic
operations normally used to update the basis inverse and also eliminates
possible round-off error.

The advantages of such procedures are dramaticalily illustrated by
the fact that such simplex codes [8] for solving capacitated transshipment
problems which use graphical processing techniques [7] are at least 75
times faster than state of the art commercial LP codes. In fact, a graphical
processing code for solving transportation problems [9] has been shown to
be 150 times faster than the OPHELIE LP code.

In addition to improving solution speed, the network processing
techniques have the added advantage of requiring less computer memory to
solve a problem. This allows larger problems to be solved without resorting
to slower external storage procedures. If the use of external storage is

unavoidable, the graphical procedures are normally able to keep the entire




basis in central memory and to facilitate cfficient input/output processing
of non-basic variable data.

Motivated by these advantages, this paper develops efficient procedures
for solving singularly constrained generalized network problems via the
simplex method. These procedures expluit the topological structure of the
first m rows of the coefficient matrix. In particular, the working basis is
partitioned so that the near triangularity property of the basis can be fully
exploited from both the algebraic and graphical processing viewpoints.

The importance of this research is actually twofold. First, it has
resulted in a highly efficient algorithm and computer code. Computational
testing of the proposed algorithm indicates that it is five times more efficient
than the general purpose LLP codes, MPS-360 and APEX-1II. Second, it
focuses attention of the importance and practicality of viewing many 1.1’
problems as being network related, especially during the formulation stages.

2.0 PROBLEM DEFINITION

A singularly constrained generalized network problem is defined as follows:

Minimize — cix + cgy (1)
subject to:

Gx Oy = (2)

fyx bl g (3)

0 s x s u (4)

0 2 v =y (5)

where each column of G contains at most two non-zero entries. The

constraints (2) will henceforth be referred to as the underlying generalized

network problem and equation (3) as the extra constraint.
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[t is often useful in the process of furmulating and solving unconstrained

generalized network problems to view them in o gencral graph structure (6],

A general graph is an extension of a simple graph ((V,E), where V is a

finite non-empty set of vertices and E is a finite set of edges, each of which

is identified with an unordered pair of distinet elements of V. Each edge of

E connects two vertices which are then considered adjacent. If £ is expanded
to contain edges that have both endpoints incident on the same vertex (loops!

or multiple edges conneccting the same two vertices (parallel edges) then

G(V,E) is called a general graph.

The underlying generalized network of the problem (1-5) forms such
a general graph. Each column of G having twc non-zero entries relates 1o
an edge connecting two vertices. Each column containing a single non-zcro
entry forms an edge with both endpoints incident on the same vertex. Such
edges will be referred to as loops. Associated with cach edge is a variable,
an upper bound, a cost coefficient, and two non-zero multipliers (one in the
case of loops). The multipliers govern how much of the variable is to be
added to or subtracted from the appropriate vertex values (right-hand sid:
values).

Most of the literature on generalized network problems assumes that
each edge has exactly two non-zero multipliers which are of opposing sign.
Further, it is assumed without loss of generality that one of the multiplicrs
has a value of -1. For this special class of generalized network problems a
direction may be imputed to each edge. The graph is then called a digraph and

the variables are customarily considered to be flows across the directed

edges or arcs.

i it
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If artificial variables are appended to the problem, it may be assumed
without loss of generality that the underlying generalized network problem
contains a coefficient matrix which has full row rank. If the coefficient matrix
does not have full row rank, it is possible to further simplify the operations

presented subsequently based on the fact that any generalized network without

full row rank is equivalent to a disjoint set of minimum cost flow networks (1 1.

3.0 BASIS STRUCTURE

Let m be the number of rows in G. Using the standard bounded
variable simplex algorithm, a basis for the singularly constrained generalized
network problem will be a linearly independent set of m + 1 column vectors
taken from the coefficient matrix corresponding to constraints (2) and (4).

Let f’i =[fi] , i=1,2,...,m, mtl denote these basis vectors, where P.1
i

represents the first m components and f; the last component of l—ji‘ It is

important to observe that the rank of S = {P1, Py, ..., P, P41 is

exactly m. For notational convenience, assume the set consisting of the

first m vectors of S in linearly independent. Letting B, = [Py, Pg, ..., P /]

and F = [fy, f5, ..., f ] , any basis for the problem (1-5) may be partitioned

m
as follows:

B Pm+1

n fm+1

Since B, is non-singular and is composed of vectors taken from (2), it

forms a working basis for the underlying generalized network problem. The

graphical structure of Bn has been characterized in the literature [5, 13,21, 22].

It contains all of the vertices but only a subset of the edges of the original

general graph, and, hence, is called a spanning subgraph. Due to the
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non-singularity of B, the spanning subgraph is simply « finite set of disjoint
quasi-trees. Each quasi-iree is a simple tree to which a single edge has been
added. The additionai edge creates exactly one cycle (a circular path) in
the quasi-tree. It should be noted that a loop, as defined previously, is a

cycle involving a single vertex and a single edge.

An efficient method for storing the general graph B has been developed,

called the extended augmented predecessor index (EAPI) method [13]. The
EAPI method, based on the triple-label method of Johnson [16, 17], emyplcys
computer list structures to represent the vertices and edges of B,. These

lists provide the means for performing the two types of quasi-tree traversal

needed to execute the basic simplex steps. Each quasi-iree may be conceptually
oriented with the cycle at the top and all attached subtrees hanging down [rom
this ''rooted cycle''. Representations of entering edges are found by tracing
paths from given vertices up to and around the associated cycles. Pscudo dual
variable values are updated by locating all vertices situated "below' a given
vertex. The efficiency of the EAPI method derives from the facts that only
non-zero basis coefficients are stored, that operations involving a basis

matrix inverse may be performed using the basis graph, and that basis
exchange steps involve only the updating of list structure pointers.

The simplex procedures in the following sections are based on the
basis partitioning of (6). The efficiency of these procedures can best be
realized if B is stored via the EAPI method. Therefore, each operation will
correspondingly be described in terms of the two quasi-tree traversal methods
briefly described earlier. However, a thorough knowledge of the EAPIL method
will not be required to understand the muathematical operations involved in

performing the basic simplex steps.
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4.0 OPTIMALITY TESTING

Cnce a basis has been selected for any lincar programming problem, the
simplex method dictates that it be checked for optimality by computing updated
objective function coefficients. For network related problems, as with general
linear programming problems, an efficient method for performing this operation
is to use complementary slackness to calculate pseudo dual variable values
associated with the current primal basis and determine if this dual solution is
feasible. In other words, once pseudo dual variable values have been determined,
an updated objective function coefficient is equivalent to the difference between
the left and right hand sides of the associated dual constraint.

The dual problem associated with the singularly constrained generalized

network problem (1-5) is:

Maximize wib 4 Sfg - AT \bTv (7)

subject to:
] Wie s o X e (8)
| - R R X (@)

w, S unrestricted

-

Pseudo dual variable values w and S associated with the current primal
working basis B may be found using the theorem of complementary slackness,

which yields the following system of equations:

¥ wiB. + SF_. = ¢ (10)

w P il S5 ¢ = (e (11)

el aa e bl
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where (c;f s Sy 1) is an appropriately ordered vector of the objective function
coefficients associated with the column vectors of B.

If the value of S in (10) is known, w can be computcd using

WEBL = el BB (12)

Assuming By is stored via the EAPI method, (12) may be solved using an
extension of the "pricing-out' procedure for generalized networks. This method
associates each variable in w with a vertex in the general graph B,. A pseudo
dual variable value associated with a single cycle vertex of a quasi-tree is
determined using the ''cycle factor'' [12, 13]. The remaining pseudo dual variable
values in the quasi-tree are determined by exploiting the near triangularity of
the system of equations (12) and using the downward traversal capabilities
of the EAPI method. Note that if a basis exchange has just occurred and S has
not changed from its previous value, the maximum number of pseudo dual
variable values that have to be updated will be those associated with a single
quasi-tree. This particular instance, which is standard in generalizced networks,
is due to the deletion and insertion of a single equation in the disjoint, near
triangular system (12).

The solution of (12) is dependent upon knowing the current value of S.
Its value may be determined by combining (11) and (12) above and performing

the following simple algebraic manipulation:

) LR S _ L
(en B SFaB, WP + St Rkt
-1 E IR 0 25
S(Fan Pm+1 fm+1) : Cﬂ”n Pm+~] “myq
T-1 d I 1 .
S (cnlsn Pt cmArl)/(lan Bt Eeq)s (13)
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The vector B 'P used twice in (13), is simply the representation of

m+1-*
P,+1 in terms of the current basis Bn for the underlying generalized neiwork

problem. In other words, it is a vector whose components, d‘i’ R BB R S

satisty:
GuF) TSRkt A Py = B (14)
Using this fact, equation (13) may be restated as
m m
8= (iZ:1 dici = emr)EZ AL - Iy (15)

Computationally, S may be found by tracing paths in the general graph

B P is related to an edge, not in B _, that is incident on at most two

n m+1 n’

vertices. Using the EAPI method, the unique paths from these vertices to
their respective cycle(s) may be found. These paths in conjunction with the
non-repeating path(s) around the associated cycle(s) generate only the non-zero

values of the d—i, i=1,2, ..., m (See [13] ). As these values are determincd,

the terms
m
6 = i?gl ehifpacaie i (16)
and
m
p = iz:,l dicl S (:In';'] (17)

may be easily computed. Upon completion, S is determined as S = 0/8,

Note that if "I—“’-mJrl is associated with a Yy variable (i.e., Pm+1 is the zero

vector), each 'Ai =0,i=1, 2, ..., m. No graph traversal is needed in this

case and S = c . q/fm4q-

Once pseudo dual variable values have been determined, updated

objective function coefficients may be calculated as follows:




<10=
AR L Pi‘ - oy Vi (18)
|
or
g5 W B B e S e, (19)

Dual, and hence primal, optimality is achieved if the following conditions

hold for all non basic variables:

¢, £0, x; = 0 ars v =0

Ei = () Yi - basic
! c. > s T Vi 2
,‘ ¢; 0, X; u; or y; Vi s (20)
i

i
:
|
|
§
i

5.0 FINDING THE KREPRESENTATION OF A VECTOR TO ENTER THE BASIS

If the current basis is non-optimal (i.e., at least one of the conditions
(20) is violated), then a pivot eligible vector is selected and a basis exchange

step is performed. To perform this basis exchange requires the determination

= . = REN X
of the representation 7. :< r> of the entering vector Pr = ( r-) in terms of
Zp f

I

the current basis B. This representation may be found by solving the following
system of equations:

% S - S R (21)

L N (22)

Employing what is essentially the double-reverse method of Charnes

and Cooper [3], (21) may be written as

SO skaey
Z. B e S S

(23)

—




L

Substituting (23) into (22) and applying algebraic manipulation yields the

following:
- -1 F o o
L 5 2 g o B, Pm+1zr‘) ¥ 1m+12f’ s I
e by e
RO N TR T R % o
- (FB.'P_ - )P B'P S N 24)
BE I ! FnBn Py m+1"" '

=1 -
The vector B, P, in the numerator of (24) is the representation of

P, in terms of the basis Hn for the underlying gencralized network problem.

Letting 8; , 1 = 1,2,..., m denote the components of this vector yields:

B.P sERB S o e s e R R (25)
1 202, m

Noting that the denominator of (25) is exactly € determined in (16), (24)

may be stated as

m
2. = (L B
i=1

£ = £ JElEE (26)

Computationally, the EAPI method may be employed to efficiently
determine the non-zero Bi ,1=1,2,...,mof (25). This is directly
analogous to the procedure described in section 4 for finding the repre-
sentation of Pm+1 in terms of Bn' As the Bi are determined, the numerator
of (26) may be successively summed. Upon completion, the previously
obtained value of 6 may be used to determinc z,..
Using the value of z, as found in (26) and the representation of P

and P, interms of B, (23) may be stated in vector form as

m+




P R

(27)

\ Bm = °<mzr/

The efficiency of (27) derives from the fact that all required information has

been generated in previous operations. There are, however, certain cases

in which the computations involved in determining 7 may be further reduced
In particular, if P is associated with a Yy» K € K, then 8; =0,

,m. Thus (26) reduces to

Tl TR
Zp = -fr/e

and (27) becomes
'o(lle\
X g
A0

Z = f

r i

\_«Am./ o/

may be associated with a Yy k €K, in which case,

Cn the other hand, P
m+]

aki = 04218000000
m
= (8, - L Bfy )L,
i

and

T 0 A e )
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6.0 MAINTAINING A PARTITIONED BASIS

Once the representation of the vector entering the basis has been found,
a bounded variable ratio iest may be performed to determine the vector to
eave the basis. This involves using the representation, the current variable
values, and the upper bounds. Compuiutioaily it is advantageous to couple
this step with the coperations performed in section 5 since only the non-zero
entries of Zr' need to be checked., The basis exchange step must not he
performed indiscriminately, however, in order to preserve the basis
partitioning. The partitioning of the basis is the foundation upon which these
procedures are buili, The destruction of that partuioniig would necessarily
invalidate the given solution procedures.

There are three possible cases which may occur depending upon the
vector selected to leave ihe basis.

Case 1: The vector to leave the basis is }.m-rl' In thig case, the
pivot may be performed directly. The underlying basis gruph Hn will remain
unchanged. Note that the current Bi L2 s valtles miay be used as
the future "’(i, i=1,2,...,m values in the computation of S and in the next
pivot operation.

Case 2° The vector to leave the basis 1s F.I # r'm11 and B'i =)

If the basis exchange step is performed immediately, B would no longer
be a basis for the underlying generalized network aua the basis partitioning
would be destroyed. In other words, ‘1'q, I’z, I I)l-l’ J‘| STEERE ]’m, l’l,z
would not be a lincarly independent set.  However, if must be true that

)

9 . . . A 2]
o’ I T } is a lincarly independent set. The
0

{1 ), ) ] )
(P Pg o Py s Piygs eees]




partitioning may, thus, be preserved by switching i" and P . After
i m

performing this exchange, the pivot may be performed us in case 1.

Case 3: The vector to leave the basis is I—;j i f3m 1 and B.i * 0,
The underlying basis graph Bn may be modified by the removal of Pj and
the insertion of Pr‘ Note that if 'Aj = 0 in this case, each '/‘i e T R
and S will remain unchanged during the basis exchange. Since S does not
change, the efficient procedures presented in section 4 may be used to
update (as opposed to recalculate) the remaining dual variable values.

In both cases 2 and 3 above, a change of pointers in the computer list

structures will be necessary. This is fully described in [13].

7.0 NUMERICAL EXAMPLE

Consider the following singularly consirained generalized network

problem:

+ +5%  + + +4x . + +7x . _t+6x, . +t0y , +
Minimize lx12 6x13 5x24 8x25 4x23 4x34 4x43 7x45 6)‘46 Oy1 1\/Iy2
subject to
1X1973X43 15
1x12 -1x24-4x9¢-) 1 1x23 = - 10

1x13 - 1x23 - 4.\(34 4 1.\(43 = {0
1
4794 Tl S R Bk
3 3
+
%95 1°45 .
3x46 D
lx12 -t 1x23 + 1.\;45 > lyy 1_\'2 2
X = U
1j
y], ‘YB e 0

wherc Yo is an artificial variable.
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An optimal busis tor the underlying gencralized network problem is

composed of the veciors I’l.,, E: et ST M Adding to
)

agr Vagr Pags Py and Pyg.

these the vector associated with ¥ and expanding yiclds a basis for the

&

constrained proble.on

200000 0 ey
\
/B B AL e R 0o |
B ,t m+1 . i i \
hl . A A
\ o bt T T T R A
1 Y \
Qs 00, =3 By
(T O e S S 0

The graph corresponding to Rn is shown in Figure 1. The numbers ot the

endpoints of each cdge are the corresponding non-zero multipliers. Not
o ) 3
indicated on the graph is Vg 7 71- 5

The first step of the algorithm is to compute a value for S, If.etting

Py be the vector associated with Yo (15) reduces to S - M.,
J2

The system of equations associated with (12) is

2wl "lwy = 6 (29)
-1 - / = 5 (30)
W2 :IW* D S
-4w2 - 2w,) 8 (31)
]w2 - lw3 4 1M (32)
~4w3 - 3w4 4 (33)
3w, * 3w ' 34
‘;Vv4 ;Wh' 6 (34
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Concentrating on the equations involved in the evele (i.e., (30), (33), and (32))

the method in [13] may be used to find w,, =~ (18 - M)/(1-3) = -9 M.

S

One pass through the graph determines the other dual variable values as

Wy T 19/2 - 3/4M, w.

o -13 + 3/2M, w

16 - 2M, w. -14 + M, and
4 )
wWg = -14 + 2M. The dual constraint associated with the non-basic variable
Xy, is violated. Thus Pyo is selected as the entering vector.

Using the simplifications discusscd at the end of section 5 and

the procedure developed in [13] to find the representation of P, yields

12

Bl O B [SVERE

&5l

Blw ©

The ratio test indicates that Fy2 is the vector to leave the basis. Thus a
case 1 basis exchange is performed. The basis graph of Figure 1 will not

change except for the variable values. The new values (found by a standard

3

i 1 = ¢ = £ - = 0 = . e
pivot operation) are X1 = 7] Xo4 © 2k Xog 5 X23 1l X34 “ 3.

5

%46 il and X19 ~ 1.

Since the representation of Pl‘) is known in terms of Hn‘ the calculation
4
of § is simplified. Setting ® = 1/(z - 1) = - 3 andp = 1/2 - 1= - 1/2

yields 8 = 2/3. Using the same procedure as discussed earlier, the dual

variable values are found to be w, = 9, w, - -23/3, we @ =12, wy - 44/3,
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ws = -40/3, and wg = -38/3. This is a dual feasible solution, and
therefore, the primal and dual solutions are optimal.

8.0 COMPUTATIONAL RESULTS

Code Development

A computer code was developed for solving sirgularly constrained
generalized network problems in order to confirm the relative efficiency
of advanced specialized procedures. The code (NETSG) utilizes the extended
API methed and the procedures presented in the preceding sections. This
program is written entirely in standard FORTRAN IV and was initially
debugged and tested using the RUN compiler on a CDC 6600 computer.
Under those conditions, it occupies a total of 11N + 5A + 9100 words of
central memory, where N is the number of nodes and A is the number of
arcs for the specific problem. The code was also subsequently tested on
an AMDAHL 470 computer using the IBM FORTRAN G compiler and on a
CDC CYBER 74 computer using the CDC FTN compiler.

Each of the major functions of the program were separated and
placed in subroutines. This made debugging easier and allowed for the use
of timing procedures for each task. Such considerations are important if
alternative procedures or parametric values are to be tested. The two
decision rules to be considered in this paper are candidate list size and
Big-M values.

One of the major considerations in any simplex based computer code
is the cheice of a vector to enter the basis on each iteration. One of the
most efficient procedures for achieving this is the use of candidate lists
(or multiple pricing). Candidate lists decrease the amount of time required

to search for the "best'' pivot arc by providing a selection list that can be




accessed after each iteration. A moce complete description of an § - R
candidate list is as follows:
Examine sequentially each of the vertices for the undervlying
generalized network. For each veriex, select the non- basic edge
that violates dual feasibility the most (20). Add this edge (if one
exists) to the list and proceed to the next vertex. This is done until
the list contains R entries or until all of the vertices have been
explored. From the list the "'best’' edge is selected to enter the
basis. The list is accessed after each pivot until it is void of
eligible edges or until it has beca accessed S times. At such time,
the list is refiilled by again examining each vertex, starting at ihe
last examined vertex. When the last (largest numerical designation)
is encountered, the non-graph dual constraints (9) are checked before
proceeding to the first vertex. If a complete pass through the vertices
is made without filling the list, the size of R is reset to the number
found and S is reduced to 1/2R.
This type of procedure has been found to be exceptionallv efficient for pure
and generalized network codes. For this reason, the effect of the initial
values of S and R for the singularly constrained code will be shown subsequently.

NETSG currently implements an artificial start procedure. In other

words, the basis for the underlying generalized network is composed entirely

of self-loops with Big-M cost coefficients. This method, although probaiiv

not the most efficient, provides a very quick initial basis. However, the

This can be a very critical determination

magnitude of Big-M must be selected.

both in terms of total solution time and total number of pivots performed.




Choice of Decision Rules

The choice of the correct candidate list size and the magnitude of
Big-M were both obtained by performing extensive computational tests.

This testing required the use of a program to generate problem sets.
Klingman, Napier, and Stutz have created the program NETGEN for
generating pure network problems [19]. With NETGEN, the user can
specify the desired structure of a problem and it will be generated using

a random function. For test purposes, NETGEN was modified to creatc
generalized arcs (non-unity multipliers) and coefficients for the extra
constraint. Both of these are created using ranges specified by the user.
The input specifications for the first three test problems can be found in
table 1. All of these problems have 1000 nodes, but thev differ dramatically
in both the structure of the underlying generalized network and of the extra
constraint.

The first test was to determine the proper initial size of the candidate
list. The results of this test can be found in table 2. The sizes tested were
1-1, 5-10, 8-16, and 15-25. 1In all three of the problems, the 8-16 list
was clearly the best choice. On problem 2, the 8-16 list proved to be over
twice as fast as the 1-1 list procedure.

The next decision rule to be tested was the magnitude of Big-M,

In the previous test, this value had been set to 1000. Additional values
tested were 500, 250, 150, and 100. Fach of these were coupled with an
8-16 candidate list. The results can be seen in table 3. [n problems 1 and
3, the 150 value proved to be the best choice. In problem 2, the 250 value

yielded the best total time but the 150 value gave the lowest number of total
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-20-
pivots. Note that the 100 value (equal the largest cost) proved to yield
infeasible solutions in all three cases.

Code Comparisons

The next phase of testing was to compare the singularly constrained
code NETSG with two widely used standard linear programming packages.
In this case, the five problems indicated in table 4 were used as test data.
These problems range from a 50 x 50 constrained generalized transportation
problem to a 1000 node constrained transshipment problem.

The first comparison was made against the IBM MPS-360 linear
programming package. The tests were performed on an AMDAHL 470
computer. Since both IBM-360 and AMDAHL 470 computers have smaller
word sizes than a CDC 6600, NETSG would not initially run due to precision
errors. Thus all type real variables were changed to double precision.

The effect of this was two-fold. First, it greatly increased the amount of
central memory required to run the program. Second, the use of double
precision arithmetic routines significantly increased computation time.

The results of testing against MPS-360 can be found in Table 5.
Even with the disadvantages listed above, NETSG proved to be between
5 and 8 times faster than MPS-360. The efficiency of NETSG was much
more apparent as the problem size increased.

The last comparison was performed using the APEX-III linear
programming package. This program is distributed by Control Data
Corporation and the tests were conducted on a CDC CYBER-74 computer.

In this case, there were no problems with word size or precision. The

i T . g 3

o o T o




basis of comparison, however, is not CPU seconds, but rather a CDC
accounting measure called an SBU. The total SBU count for a job is
an accumulation of CPU seconds used, 110 functions performed, and
central memory requirements. This measure seemed appropriate,
especially since it allowed the comparison of actual dollar amounts.
CDC charges customers a minimum of $0. 18 per SBU uscd.

The results of the comparison of NETSG and APEX-III are contained
in Table 6. In this case, NETSG was tfrom 6 to 28 times more efficient,
depending upon the problem size. It should be noted that in problem 5
APEX-III used over 20 times as many SBU's and was still not at the

optimum after completing 10, 000 iterations.
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TABLE 5

NETSG vs., MPS-360+*

Problem NETSG MPS-360
1 1.64 8.59
2 3.92 31, 27
3 261 16.48
4 13. 06 110. 68
5 35.62 DNR1

*times listed are CPU seconds

1pr'oblem data set was too large




TABLE 6

R ot e DAL e

NETSG vs. APEX - III

NETSG APEX-III
Problem SBU's1 Costz SBU's Cost
1 9.16 $ 1.65 62. 70 $ 11,29
2 16. 10 2.90 205. 87 37.06
3 11.38 2.05 130. 18 23.43
4 32.72 5.89 943. 25 169. 79
] 5 83.13 14. 96 1875.55° 337. 60

lsystem Billing Unit

2Computed at $0. 18 per SBU

3Ter'minated after 10, 000 iterations
Objective function value = 379, 065, 627
Optimal value = 4, 745, 739
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